Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Short Text Classification via Knowledge powered Attention with Similarity Matrix based CNN (2002.03350v2)

Published 9 Feb 2020 in cs.CL

Abstract: Short text is becoming more and more popular on the web, such as Chat Message, SMS and Product Reviews. Accurately classifying short text is an important and challenging task. A number of studies have difficulties in addressing this problem because of the word ambiguity and data sparsity. To address this issue, we propose a knowledge powered attention with similarity matrix based convolutional neural network (KASM) model, which can compute comprehensive information by utilizing the knowledge and deep neural network. We use knowledge graph (KG) to enrich the semantic representation of short text, specially, the information of parent-entity is introduced in our model. Meanwhile, we consider the word interaction in the literal-level between short text and the representation of label, and utilize similarity matrix based convolutional neural network (CNN) to extract it. For the purpose of measuring the importance of knowledge, we introduce the attention mechanisms to choose the important information. Experimental results on five standard datasets show that our model significantly outperforms state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mingchen Li (50 papers)
  2. Gabtone. Clinton (1 paper)
  3. Yijia Miao (1 paper)
  4. Feng Gao (240 papers)
Citations (3)