2000 character limit reached
Connectivity of generating graphs of nilpotent groups (2002.03330v2)
Published 9 Feb 2020 in math.GR
Abstract: Let $G$ be $2$-generated group. The generating graph of $\Gamma(G)$ is the graph whose vertices are the elements of $G$ and where two vertices $g$ and $h$ are adjacent if $G=\langle g,h\rangle$. This graph encodes the combinatorial structure of the distribution of generating pairs across $G$. In this paper we study several natural graph theoretic properties related to the connectedness of $\Gamma(G)$ in the case where $G$ is a finite nilpotent group. For example, we prove that if $G$ is nilpotent, then the graph obtained from $\Gamma(G)$ by removing its isolated vertices is maximally connected and, if $|G| \geq 3$, also Hamiltonian. We pose several questions.