Papers
Topics
Authors
Recent
Search
2000 character limit reached

A convergent low-wavenumber, high-frequency homogenization of the wave equation in periodic media with a source term

Published 7 Feb 2020 in math.AP, cs.NA, and math.NA | (2002.02838v2)

Abstract: We pursue a low-wavenumber, second-order homogenized solution of the time-harmonic wave equation at both low and high frequency in periodic media with a source term whose frequency resides inside a band gap. Considering the wave motion in an unbounded medium $\mathbb{R}d$ ($d\geqslant1$), we first use the (Floquet-)Bloch transform to formulate an equivalent variational problem in a bounded domain. By investigating the source term's projection onto certain periodic functions, the second-order model can then be derived via asymptotic expansion of the Bloch eigenfunction and the germane dispersion relationship. We establish the convergence of the second-order homogenized solution, and we include numerical examples to illustrate the convergence result.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.