Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What You See is What it Means! Semantic Representation Learning of Code based on Visualization and Transfer Learning (2002.02650v1)

Published 7 Feb 2020 in cs.SE

Abstract: Recent successes in training word embeddings for NLP tasks have encouraged a wave of research on representation learning for source code, which builds on similar NLP methods. The overall objective is then to produce code embeddings that capture the maximum of program semantics. State-of-the-art approaches invariably rely on a syntactic representation (i.e., raw lexical tokens, abstract syntax trees, or intermediate representation tokens) to generate embeddings, which are criticized in the literature as non-robust or non-generalizable. In this work, we investigate a novel embedding approach based on the intuition that source code has visual patterns of semantics. We further use these patterns to address the outstanding challenge of identifying semantic code clones. We propose the WYSIWIM ("What You See Is What It Means") approach where visual representations of source code are fed into powerful pre-trained image classification neural networks from the field of computer vision to benefit from the practical advantages of transfer learning. We evaluate the proposed embedding approach on two variations of the task of semantic code clone identification: code clone detection (a binary classification problem), and code classification (a multi-classification problem). We show with experiments on the BigCloneBench (Java) and Open Judge (C) datasets that although simple, our WYSIWIM approach performs as effectively as state of the art approaches such as ASTNN or TBCNN. We further explore the influence of different steps in our approach, such as the choice of visual representations or the classification algorithm, to eventually discuss the promises and limitations of this research direction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Patrick Keller (4 papers)
  2. Laura Plein (5 papers)
  3. Tegawendé F. Bissyandé (82 papers)
  4. Jacques Klein (89 papers)
  5. Yves Le Traon (83 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.