Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-Equivalence of Width and Depth of Neural Networks (2002.02515v7)

Published 6 Feb 2020 in cs.LG and stat.ML

Abstract: While classic studies proved that wide networks allow universal approximation, recent research and successes of deep learning demonstrate the power of deep networks. Based on a symmetric consideration, we investigate if the design of artificial neural networks should have a directional preference, and what the mechanism of interaction is between the width and depth of a network. Inspired by the De Morgan law, we address this fundamental question by establishing a quasi-equivalence between the width and depth of ReLU networks in two aspects. First, we formulate two transforms for mapping an arbitrary ReLU network to a wide network and a deep network respectively for either regression or classification so that the essentially same capability of the original network can be implemented. Then, we replace the mainstream artificial neuron type with a quadratic counterpart, and utilize the factorization and continued fraction representations of the same polynomial function to construct a wide network and a deep network, respectively. Based on our findings, a deep network has a wide equivalent, and vice versa, subject to an arbitrarily small error.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Reddit Logo Streamline Icon: https://streamlinehq.com