Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On multifractal formalism for self-similar measures with overlaps (2002.02319v2)

Published 6 Feb 2020 in math.DS and math.CA

Abstract: Let $\mu$ be a self-similar measure generated by an IFS $\Phi={\phi_i}{i=1}\ell$ of similarities on $\mathbb Rd$ ($d\ge 1$). When $\Phi$ is dimensional regular (see Definition~1.1), we give an explicit formula for the $Lq$-spectrum $\tau\mu(q)$ of $\mu$ over $[0,1]$, and show that $\tau_\mu$ is differentiable over $(0,1]$ and the multifractal formalism holds for $\mu$ at any $\alpha\in [\tau_\mu'(1),\tau_\mu'(0+)]$. We also verify the validity of the multifractal formalism of $\mu$ over $[\tau_\mu'(\infty),\tau_\mu'(0+)]$ for two new classes of overlapping algebraic IFSs by showing that the asymptotically weak separation condition holds. For one of them, the proof appeals to a recent result of Shmerkin on the $Lq$-spectrum of self-similar measures.

Summary

We haven't generated a summary for this paper yet.