Curvature of magnetic field lines in compressible magnetized turbulence: Statistics, magnetization predictions, gradient curvature, modes and self-gravitating media (2002.01926v2)
Abstract: Magnetic field lines in interstellar media have a rich morphology, which could be characterized by geometrical parameters such as curvature and torsion. In this paper, we explore the statistical properties of magnetic field line curvature $\kappa$ in compressible magnetized turbulence. We see that both the mean and standard deviation of magnetic field line curvature obey power-law relations to the magnetization. Moreover, the power-law tail of the curvature probability distribution function is also proportional to the Alfvenic Mach number. We also explore whether the curvature method could be used in the field-tracing Velocity Gradient Technique. In particular, we observe that there is a relation between the mean and standard deviation of the curvature probed by velocity gradients to $M_A$. Finally we discuss how curvature is contributed by different MHD modes in interstellar turbulence, and suggests that the eigenvectors of MHD modes could be possibly represented by the natural Fernet-Serrat frame of the magnetic field lines. We discuss possible theoretical and observational applications of the curvature technique, including the extended understanding on a special length scale that characterize the importance of magnetic field curvature in driving MHD turbulence, and how it could be potentially used to study self-gravitating system.