Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experiments with Different Indexing Techniques for Text Retrieval tasks on Gujarati Language using Bag of Words Approach (2002.01792v1)

Published 5 Feb 2020 in cs.IR and cs.DL

Abstract: This paper presents results of various experiments carried out to improve text retrieval of gujarati text documents. Text retrieval involves searching and ranking of text documents for a given set of query terms. We have tested various retrieval models that uses bag-of-words approach. Bag-of-words approach is a traditional approach that is being used till date where the text document is represented as collection of words. Measures like frequency count, inverse document frequency etc. are used to signify and rank relevant documents for user queries. Different ranking models have been used to quantify ranking performance using the metric of mean average precision. Gujarati is a morphologically rich language, we have compared techniques like stop word removal, stemming and frequent case generation against baseline to measure the improvements in information retrieval tasks. Most of the techniques are language dependent and requires development of language specific tools. We used plain unprocessed word index as the baseline, we have seen significant improvements in comparison of MAP values after applying different indexing techniques when compared to the baseline.

Summary

We haven't generated a summary for this paper yet.