Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parsing as Pretraining (2002.01685v1)

Published 5 Feb 2020 in cs.CL and cs.LG

Abstract: Recent analyses suggest that encoders pretrained for LLMing capture certain morpho-syntactic structure. However, probing frameworks for word vectors still do not report results on standard setups such as constituent and dependency parsing. This paper addresses this problem and does full parsing (on English) relying only on pretraining architectures -- and no decoding. We first cast constituent and dependency parsing as sequence tagging. We then use a single feed-forward layer to directly map word vectors to labels that encode a linearized tree. This is used to: (i) see how far we can reach on syntax modelling with just pretrained encoders, and (ii) shed some light about the syntax-sensitivity of different word vectors (by freezing the weights of the pretraining network during training). For evaluation, we use bracketing F1-score and LAS, and analyze in-depth differences across representations for span lengths and dependency displacements. The overall results surpass existing sequence tagging parsers on the PTB (93.5%) and end-to-end EN-EWT UD (78.8%).

Citations (31)

Summary

We haven't generated a summary for this paper yet.