Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EdgeDASH: Exploiting Network-Assisted Adaptive Video Streaming for Edge Caching (2002.01553v1)

Published 4 Feb 2020 in cs.NI and cs.MM

Abstract: While edge video caching has great potential to decrease the core network traffic as well as the users' experienced latency, it is often challenging to exploit the caches in current client-driven video streaming solutions due to two key reasons. First, even those clients interested in the same content might request different quality levels as a video content is encoded into multiple qualities to match a wide range of network conditions and device capabilities. Second, the clients, who select the quality of the next chunk to request, are unaware of the cached content at the network edge. Hence, it becomes imperative to develop network-side solutions to exploit caching. This can also mitigate some performance issues, in particular for the scenarios in which multiple video clients compete for some bottleneck capacity. In this paper, we propose a network-side control logic running at a WiFi AP to facilitate the use of cached video content. In particular, an AP can assign a client station a different video quality than its request, in case the alternative quality provides a better utility. We formulate the quality assignment problem as an optimization problem and develop several heuristics with polynomial complexity. Compared to the baseline where the clients determine the quality adaptation, our proposals, referred to as EdgeDASH, offer higher video quality, higher cache hits, and lower stalling ratio which are essential for user's satisfaction. Our simulations show that EdgeDASH facilitates significant cache hits and decreases the buffer stalls only by changing the client's request by one quality level. Moreover, from our analysis, we conclude that the network assistance provides significant performance improvement, especially when the clients with identical interests compete for a bottleneck link's capacity.

Citations (14)

Summary

We haven't generated a summary for this paper yet.