Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Four examples of Beilinson-Bernstein localization (2002.01540v2)

Published 4 Feb 2020 in math.RT

Abstract: Let $\mathfrak{g}$ be a complex semisimple Lie algebra. The Beilinson-Bernstein localization theorem establishes an equivalence of the category of $\mathfrak{g}$-modules of a fixed infinitesimal character and a category of modules over a twisted sheaf of differential operators on the flag variety of $\mathfrak{g}$. In this expository paper, we give four detailed examples of this theorem when $\mathfrak{g}=\mathfrak{sl}(2,\mathbb{C})$. Specifically, we describe the $\mathcal{D}$-modules associated to finite-dimensional irreducible $\mathfrak{g}$-modules, Verma modules, Whittaker modules, discrete series representations of $SL(2,\mathbb{R})$, and principal series representations of $SL(2,\mathbb{R})$.

Summary

We haven't generated a summary for this paper yet.