Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Storage Optimal Control under Net Metering Policies (2002.01524v1)

Published 4 Feb 2020 in eess.SY and cs.SY

Abstract: Electricity prices and the end user net load vary with time. Electricity consumers equipped with energy storage devices can perform energy arbitrage, i.e., buy when energy is cheap or when there is a deficit of energy, and sell it when it is expensive or in excess, taking into account future variations in price and net load. Net metering policies indicate that many of the utilities apply a {customer selling} rate lower than or equal to the retail {customer buying rate} in order to compensate excess energy generated by end users. In this paper, we formulate the optimal control problem for an end user energy storage device in presence of net metering. We propose a computationally efficient algorithm, with worst case run time complexity of quadratic in terms of number of samples in lookahead horizon, that computes the optimal energy ramping rates in a time horizon. The proposed algorithm exploits the problem's piecewise linear structure and convexity properties for the \textit{discretization} of optimal Lagrange multipliers. The solution has a \textit{threshold-based structure} in which optimal control decisions are independent of past or future price as well as of net load values beyond a certain time horizon, defined as a \textit{sub-horizon}. Numerical results show the effectiveness of the proposed model and algorithm. Furthermore, we investigate the impact of forecasting errors on the proposed technique. We consider an Auto-Regressive Moving Average (ARMA) based forecasting of net load together with the Model Predictive Control (MPC). We numerically show that adaptive forecasting and MPC significantly mitigate the effects of forecast error on energy arbitrage gains.

Citations (10)

Summary

We haven't generated a summary for this paper yet.