Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stochastic homogenisation of free-discontinuity functionals in random perforated domains

Published 4 Feb 2020 in math.AP | (2002.01389v1)

Abstract: In this paper we study the asymptotic behaviour of a family of random free-discontinuity energies $E_\varepsilon$ defined on a randomly perforated domain, as $\varepsilon$ goes to zero. The functionals $E_\varepsilon$ model the energy associated to displacements of porous random materials that can develop cracks. To gain compactness for sequences of displacements with bounded energies, we need to overcome the lack of equi-coerciveness of the functionals. We do so by means of an extension result, under the assumption that the random perforations cannot come too close to one another. The limit energy is then obtained in two steps. As a first step we apply a general result of stochastic convergence of free-discontinuity functionals to a modified, coercive version of $E_\varepsilon$. Then the effective volume and surface energy densities are identified by means of a careful limit procedure.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.