Papers
Topics
Authors
Recent
2000 character limit reached

Large deviations for singularly interacting diffusions

Published 4 Feb 2020 in math.PR | (2002.01295v2)

Abstract: In this paper we prove a large deviation principle (LDP) for the empirical measure of a general system of mean-field interacting diffusions with singular drift (as the number of particles tends to infinity) and show convergence to the associated McKean-Vlasov equation. Along the way, we prove an extended version of the Varadhan Integral Lemma for a discontinuous change of measure and subsequently an LDP for Gibbs and Gibbs-like measures with singular potentials.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.