Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gibbs posterior inference on multivariate quantiles (2002.01052v3)

Published 3 Feb 2020 in math.ST, stat.ME, and stat.TH

Abstract: Bayesian and other likelihood-based methods require specification of a statistical model and may not be fully satisfactory for inference on quantities, such as quantiles, that are not naturally defined as model parameters. In this paper, we construct a direct and model-free Gibbs posterior distribution for multivariate quantiles. Being model-free means that inferences drawn from the Gibbs posterior are not subject to model misspecification bias, and being direct means that no priors for or marginalization over nuisance parameters are required. We show here that the Gibbs posterior enjoys a root-$n$ convergence rate and a Bernstein--von Mises property, i.e., for large n, the Gibbs posterior distribution can be approximated by a Gaussian. Moreover, we present numerical results showing the validity and efficiency of credible sets derived from a suitably scaled Gibbs posterior.

Summary

We haven't generated a summary for this paper yet.