Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter (2002.01008v3)

Published 3 Feb 2020 in cs.CV

Abstract: We introduce an approach that enhances images using a color filter in order to create adversarial effects, which fool neural networks into misclassification. Our approach, Adversarial Color Enhancement (ACE), generates unrestricted adversarial images by optimizing the color filter via gradient descent. The novelty of ACE is its incorporation of established practice for image enhancement in a transparent manner. Experimental results validate the white-box adversarial strength and black-box transferability of ACE. A range of examples demonstrates the perceptual quality of images that ACE produces. ACE makes an important contribution to recent work that moves beyond $L_p$ imperceptibility and focuses on unrestricted adversarial modifications that yield large perceptible perturbations, but remain non-suspicious, to the human eye. The future potential of filter-based adversaries is also explored in two directions: guiding ACE with common enhancement practices (e.g., Instagram filters) towards specific attractive image styles and adapting ACE to image semantics. Code is available at https://github.com/ZhengyuZhao/ACE.

Citations (1)

Summary

We haven't generated a summary for this paper yet.