Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structural-Aware Sentence Similarity with Recursive Optimal Transport (2002.00745v1)

Published 28 Jan 2020 in cs.CL, cs.LG, and stat.ML

Abstract: Measuring sentence similarity is a classic topic in natural language processing. Light-weighted similarities are still of particular practical significance even when deep learning models have succeeded in many other tasks. Some light-weighted similarities with more theoretical insights have been demonstrated to be even stronger than supervised deep learning approaches. However, the successful light-weighted models such as Word Mover's Distance [Kusner et al., 2015] or Smooth Inverse Frequency [Arora et al., 2017] failed to detect the difference from the structure of sentences, i.e. order of words. To address this issue, we present Recursive Optimal Transport (ROT) framework to incorporate the structural information with the classic OT. Moreover, we further develop Recursive Optimal Similarity (ROTS) for sentences with the valuable semantic insights from the connections between cosine similarity of weighted average of word vectors and optimal transport. ROTS is structural-aware and with low time complexity compared to optimal transport. Our experiments over 20 sentence textural similarity (STS) datasets show the clear advantage of ROTS over all weakly supervised approaches. Detailed ablation study demonstrate the effectiveness of ROT and the semantic insights.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zihao Wang (216 papers)
  2. Yong Zhang (660 papers)
  3. Hao Wu (623 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.