Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Greedy Quasi-Newton Methods with Explicit Superlinear Convergence (2002.00657v3)

Published 3 Feb 2020 in math.OC

Abstract: In this paper, we study greedy variants of quasi-Newton methods. They are based on the updating formulas from a certain subclass of the Broyden family. In particular, this subclass includes the well-known DFP, BFGS and SR1 updates. However, in contrast to the classical quasi-Newton methods, which use the difference of successive iterates for updating the Hessian approximations, our methods apply basis vectors, greedily selected so as to maximize a certain measure of progress. For greedy quasi-Newton methods, we establish an explicit non-asymptotic bound on their rate of local superlinear convergence, which contains a contraction factor, depending on the square of the iteration counter. We also show that these methods produce Hessian approximations whose deviation from the exact Hessians linearly convergences to zero.

Citations (57)

Summary

We haven't generated a summary for this paper yet.