A Sobolev-type inequality for the curl operator and ground states for the curl-curl equation with critical Sobolev exponent (2002.00613v2)
Abstract: Let $\Omega\subset \mathbb{R}3$ be a Lipschitz domain and let $S_\mathrm{curl}(\Omega)$ be the largest constant such that $$ \int_{\mathbb{R}3}|\nabla\times u|2\, dx\geq S_{\mathrm{curl}}(\Omega) \inf_{\substack{w\in W_06(\mathrm{curl};\mathbb{R}3)\ \nabla\times w=0}}\Big(\int_{\mathbb{R}3}|u+w|6\,dx\Big){\frac13} $$ for any $u$ in $W_06(\mathrm{curl};\Omega)\subset W_06(\mathrm{curl};\mathbb{R}3)$ where $W_06(\mathrm{curl};\Omega)$ is the closure of $\mathcal{C}0{\infty}(\Omega,\mathbb{R}3)$ in ${u\in L6(\Omega,\mathbb{R}3): \nabla\times u\in L2(\Omega,\mathbb{R}3)}$ with respect to the norm $(|u|_62+|\nabla\times u|_22){1/2}$. We show that $S{\mathrm{curl}}(\Omega)$ is strictly larger than the classical Sobolev constant $S$ in $\mathbb{R}3$. Moreover, $S_{\mathrm{curl}}(\Omega)$ is independent of $\Omega$ and is attained by a ground state solution to the curl-curl problem $$ \nabla\times (\nabla\times u) = |u|4u $$ if $\Omega=\mathbb{R}3$. With the aid of those results, we also investigate ground states of the Brezis-Nirenberg-type problem for the curl-curl operator in a bounded domain $\Omega$ $$\nabla\times (\nabla\times u) +\lambda u = |u|4u\quad\hbox{in }\Omega$$ with the so-called metallic boundary condition $\nu\times u=0$ on $\partial\Omega$, where $\nu$ is the exterior normal to $\partial\Omega$.