Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A type II blowup for the six dimensional energy critical heat equation (2002.00528v1)

Published 3 Feb 2020 in math.AP

Abstract: We study blowup solutions of the 6D energy critical heat equation $u_t=\Delta u+|u|{p-1}u$ in $\Rn\times(0,T)$. A goal of this paper is to show the existence of type II blowup solutions predicted by Filippas, Herrero and Vel\'azquez \cite{FilippasHV}. The dimension six is a border case whether a type II blowup can occur or not. Therefore the behavior of the solution is quite different from other cases. In fact, our solution behaves like [ u(x,t)\approx \begin{cases} \lambda(t){-2}{\sf Q}(\lambda(t){-1}x) & \text{in the inner region: } |x|\sim\lambda(t), -(p-1)\frac{1}{p-1}(T-t){-\frac{1}{p-1}} & \text{in the selfsimilar region: } |x|\sim\sqrt{T-t} \end{cases} ] with $\lambda(t)=(1+o(1))(T-t)\frac{5}{4}|\log(T-t)|{-\frac{15}{8}}$. The local energy $E_\text{loc}(u) =\frac{1}{2}|\nabla u|{L2(|x|<1)}2-\frac{1}{3}|u|{L3(|x|<1)}3$ of the solution goes to $-\infty$.

Summary

We haven't generated a summary for this paper yet.