Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Toeplitz operators associated with regular polydomains (2002.00462v1)

Published 30 Jan 2020 in math.FA and math.OA

Abstract: In this paper we introduce and study the class of weighted multi-Toeplitz operators associated with noncommutative polydomains ${\bf D_fm}$, ${\bf m}:=(m_1,\ldots, m_k)\in {\bf N}k$, generated by $k$-tuples ${\bf f}:=(f_1,\ldots, f_k)$ of positive regular free holomorphic functions in a neighborhood of the origin. These operators are acting on the tensor product $F2(H_{n_1})\otimes \cdots \otimes F2(H_{n_k})$ of full Fock spaces with $n_i$ generators or, equivalently, they can be viewed as multi-Toeplitz operators acting on tensor products of weighted full Fock spaces. For a large class of polydomains, we show that there are no non-zero compact multi-Toeplitz operators. We characterize the weighted multi-Toeplitz operators in terms of bounded free $k$-pluriharmonic functions on the radial part of ${\bf D_fm}$ and use the result to obtain an analogue of the Dirichlet extension problem for free $k$-pluriharmonic functions. We show that the weighted multi-Toeplitz operators have noncommutative Fourier representations which can be viewed as noncommutative symbols and can be used to recover the associated operators. We also prove that the weighted multi-Toeplitz operators satisfy a Brown-Halmos type equation associated with the polydomain ${\bf D_fm}$.

Summary

We haven't generated a summary for this paper yet.