Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simultaneous Left Atrium Anatomy and Scar Segmentations via Deep Learning in Multiview Information with Attention (2002.00440v1)

Published 2 Feb 2020 in eess.IV and cs.CV

Abstract: Three-dimensional late gadolinium enhanced (LGE) cardiac MR (CMR) of left atrial scar in patients with atrial fibrillation (AF) has recently emerged as a promising technique to stratify patients, to guide ablation therapy and to predict treatment success. This requires a segmentation of the high intensity scar tissue and also a segmentation of the left atrium (LA) anatomy, the latter usually being derived from a separate bright-blood acquisition. Performing both segmentations automatically from a single 3D LGE CMR acquisition would eliminate the need for an additional acquisition and avoid subsequent registration issues. In this paper, we propose a joint segmentation method based on multiview two-task (MVTT) recursive attention model working directly on 3D LGE CMR images to segment the LA (and proximal pulmonary veins) and to delineate the scar on the same dataset. Using our MVTT recursive attention model, both the LA anatomy and scar can be segmented accurately (mean Dice score of 93% for the LA anatomy and 87% for the scar segmentations) and efficiently (~0.27 seconds to simultaneously segment the LA anatomy and scars directly from the 3D LGE CMR dataset with 60-68 2D slices). Compared to conventional unsupervised learning and other state-of-the-art deep learning based methods, the proposed MVTT model achieved excellent results, leading to an automatic generation of a patient-specific anatomical model combined with scar segmentation for patients in AF.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (16)
  1. Guang Yang (422 papers)
  2. Jun Chen (374 papers)
  3. Zhifan Gao (21 papers)
  4. Shuo Li (179 papers)
  5. Hao Ni (43 papers)
  6. Elsa Angelini (21 papers)
  7. Tom Wong (11 papers)
  8. Raad Mohiaddin (11 papers)
  9. Eva Nyktari (2 papers)
  10. Ricardo Wage (1 paper)
  11. Lei Xu (172 papers)
  12. Yanping Zhang (11 papers)
  13. Xiuquan Du (4 papers)
  14. Heye Zhang (13 papers)
  15. David Firmin (20 papers)
  16. Jennifer Keegan (15 papers)
Citations (71)

Summary

We haven't generated a summary for this paper yet.