Papers
Topics
Authors
Recent
2000 character limit reached

Condensed Generalized Finite Element Method (CGFEM)

Published 2 Feb 2020 in math.NA and cs.NA | (2002.00425v1)

Abstract: Generalized or extended finite element methods (GFEM/XFEM) are in general badly conditioned and have numerous additional degrees of freedom (DOF) compared with the FEM because of introduction of enriched functions. In this paper, we develop an approach to establish a subspace of a conventional GFEM/XFEM approximation space using partition of unity (PU) techniques and local least square procedures. The proposed GFEM is referred to as condensed GFEM (CGFEM), which (i) possesses as many DOFs as the preliminary FEM, (ii) enjoys similar approximation properties with the GFEM/XFEM, and (iii) is well-conditioned in a sense that its conditioning is of the same order as that of the FEM. The fundamental approximation properties of CGFEM is proven mathematically. The CGFEM is applied to a problem of high order polynomial approximations and a Poisson crack problem; optimal convergence orders of the former are proven rigorously. The numerical experiments and comparisons with the conventional GFEM/XFEM and FEM are made to verify the theory and effectiveness of CGFEM.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.