Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Three results on transcendental meromorphic solutions of certain nonlinear differential equations (2002.00289v1)

Published 1 Feb 2020 in math.CV

Abstract: In this paper, we study the transcendental meromorphic solutions for the nonlinear differential equations: $f{n}+P(f)=R(z)e{\alpha(z)}$ and $f{n}+P_{*}(f)=p_{1}(z)e{\alpha_{1}(z)}+p_{2}(z)e{\alpha_{2}(z)}$ in the complex plane, where $P(f)$ and $P_{*}(f)$ are differential polynomials in $f$ of degree $n-1$ with coefficients being small functions and rational functions respectively, $R$ is a non-vanishing small function of $f$, $\alpha$ is a nonconstant entire function, $p_{1}, p_{2}$ are non-vanishing rational functions, and $\alpha_{1}, \alpha_{2}$ are nonconstant polynomials. Particularly, we consider the solutions of the second equation when $p_{1}, p_{2}$ are nonzero constants, and $\deg \alpha_{1}=\deg \alpha_{2}=1$. Our results are improvements and complements of Liao (Complex Var. Elliptic Equ. 2015, 60(6): 748--756), and Rong-Xu (Mathematics 2019, 7, 539), etc., which partially answer a question proposed by Li (J. Math. Anal. Appl. 2011, 375: 310--319).

Summary

We haven't generated a summary for this paper yet.