Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-Sample Testing for Event Impacts in Time Series (2001.11930v1)

Published 31 Jan 2020 in stat.ME and stat.ML

Abstract: In many application domains, time series are monitored to detect extreme events like technical faults, natural disasters, or disease outbreaks. Unfortunately, it is often non-trivial to select both a time series that is informative about events and a powerful detection algorithm: detection may fail because the detection algorithm is not suitable, or because there is no shared information between the time series and the events of interest. In this work, we thus propose a non-parametric statistical test for shared information between a time series and a series of observed events. Our test allows identifying time series that carry information on event occurrences without committing to a specific event detection methodology. In a nutshell, we test for divergences of the value distributions of the time series at increasing lags after event occurrences with a multiple two-sample testing approach. In contrast to related tests, our approach is applicable for time series over arbitrary domains, including multivariate numeric, strings or graphs. We perform a large-scale simulation study to show that it outperforms or is on par with related tests on our task for univariate time series. We also demonstrate the real-world applicability of our approach on datasets from social media and smart home environments.

Citations (8)

Summary

We haven't generated a summary for this paper yet.