Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Consistency Theorem for Randomized Singular Value Decomposition (2001.11874v1)

Published 31 Jan 2020 in math.ST and stat.TH

Abstract: The singular value decomposition (SVD) and the principal component analysis are fundamental tools and probably the most popular methods for data dimension reduction. The rapid growth in the size of data matrices has lead to a need for developing efficient large-scale SVD algorithms. Randomized SVD was proposed, and its potential was demonstrated for computing a low-rank SVD (Rokhlin et al., 2009). In this article, we provide a consistency theorem for the randomized SVD algorithm and a numerical example to show how the random projections to low dimension affect the consistency.

Summary

We haven't generated a summary for this paper yet.