Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse Filtering for Hidden Markov Models with Applications to Counter-Adversarial Autonomous Systems (2001.11809v1)

Published 31 Jan 2020 in eess.SY and cs.SY

Abstract: Bayesian filtering deals with computing the posterior distribution of the state of a stochastic dynamic system given noisy observations. In this paper, motivated by applications in counter-adversarial systems, we consider the following inverse filtering problem: Given a sequence of posterior distributions from a Bayesian filter, what can be inferred about the transition kernel of the state, the observation likelihoods of the sensor and the measured observations? For finite-state Markov chains observed in noise (hidden Markov models), we show that a least-squares fit for estimating the parameters and observations amounts to a combinatorial optimization problem with non-convex objective. Instead, by exploiting the algebraic structure of the corresponding Bayesian filter, we propose an algorithm based on convex optimization for reconstructing the transition kernel, the observation likelihoods and the observations. We discuss and derive conditions for identifiability. As an application of our results, we illustrate the design of counter-adversarial systems: By observing the actions of an autonomous enemy, we estimate the accuracy of its sensors and the observations it has received. The proposed algorithms are evaluated in numerical examples.

Citations (19)

Summary

We haven't generated a summary for this paper yet.