Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A comparison of Vector Symbolic Architectures (2001.11797v4)

Published 31 Jan 2020 in cs.AI

Abstract: Vector Symbolic Architectures combine a high-dimensional vector space with a set of carefully designed operators in order to perform symbolic computations with large numerical vectors. Major goals are the exploitation of their representational power and ability to deal with fuzziness and ambiguity. Over the past years, several VSA implementations have been proposed. The available implementations differ in the underlying vector space and the particular implementations of the VSA operators. This paper provides an overview of eleven available VSA implementations and discusses their commonalities and differences in the underlying vector space and operators. We create a taxonomy of available binding operations and show an important ramification for non self-inverse binding operations using an example from analogical reasoning. A main contribution is the experimental comparison of the available implementations in order to evaluate (1) the capacity of bundles, (2) the approximation quality of non-exact unbinding operations, (3) the influence of combining binding and bundling operations on the query answering performance, and (4) the performance on two example applications: visual place- and language-recognition. We expect this comparison and systematization to be relevant for development of VSAs, and to support the selection of an appropriate VSA for a particular task. The implementations are available.

Citations (100)

Summary

We haven't generated a summary for this paper yet.