Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Binary Classification with XOR Queries: Fundamental Limits and An Efficient Algorithm (2001.11775v2)

Published 31 Jan 2020 in cs.IT, cs.LG, math.IT, and stat.ML

Abstract: We consider a query-based data acquisition problem for binary classification of unknown labels, which has diverse applications in communications, crowdsourcing, recommender systems and active learning. To ensure reliable recovery of unknown labels with as few number of queries as possible, we consider an effective query type that asks "group attribute" of a chosen subset of objects. In particular, we consider the problem of classifying $m$ binary labels with XOR queries that ask whether the number of objects having a given attribute in the chosen subset of size $d$ is even or odd. The subset size $d$, which we call query degree, can be varying over queries. We consider a general noise model where the accuracy of answers on queries changes depending both on the worker (the data provider) and query degree $d$. For this general model, we characterize the information-theoretic limit on the optimal number of queries to reliably recover $m$ labels in terms of a given combination of degree-$d$ queries and noise parameters. Further, we propose an efficient inference algorithm that achieves this limit even when the noise parameters are unknown.

Citations (3)

Summary

We haven't generated a summary for this paper yet.