Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fact-aware Sentence Split and Rephrase with Permutation Invariant Training (2001.11383v2)

Published 16 Jan 2020 in cs.CL

Abstract: Sentence Split and Rephrase aims to break down a complex sentence into several simple sentences with its meaning preserved. Previous studies tend to address the issue by seq2seq learning from parallel sentence pairs, which takes a complex sentence as input and sequentially generates a series of simple sentences. However, the conventional seq2seq learning has two limitations for this task: (1) it does not take into account the facts stated in the long sentence; As a result, the generated simple sentences may miss or inaccurately state the facts in the original sentence. (2) The order variance of the simple sentences to be generated may confuse the seq2seq model during training because the simple sentences derived from the long source sentence could be in any order. To overcome the challenges, we first propose the Fact-aware Sentence Encoding, which enables the model to learn facts from the long sentence and thus improves the precision of sentence split; then we introduce Permutation Invariant Training to alleviate the effects of order variance in seq2seq learning for this task. Experiments on the WebSplit-v1.0 benchmark dataset show that our approaches can largely improve the performance over the previous seq2seq learning approaches. Moreover, an extrinsic evaluation on oie-benchmark verifies the effectiveness of our approaches by an observation that splitting long sentences with our state-of-the-art model as preprocessing is helpful for improving OpenIE performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yinuo Guo (7 papers)
  2. Tao Ge (53 papers)
  3. Furu Wei (291 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.