Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-optimal analysis of Lasserre's univariate measure-based bounds for multivariate polynomial optimization (2001.11289v2)

Published 30 Jan 2020 in math.OC

Abstract: We consider a hierarchy of upper approximations for the minimization of a polynomial $f$ over a compact set $K \subseteq \mathbb{R}n$ proposed recently by Lasserre (arXiv:1907.097784, 2019). This hierarchy relies on using the push-forward measure of the Lebesgue measure on $K$ by the polynomial $f$ and involves univariate sums of squares of polynomials with growing degrees $2r$. Hence it is weaker, but cheaper to compute, than an earlier hierarchy by Lasserre (SIAM Journal on Optimization 21(3), 864--885, 2011), which uses multivariate sums of squares. We show that this new hierarchy converges to the global minimum of $f$ at a rate in $O(\log2 r / r2)$ whenever $K$ satisfies a mild geometric condition, which holds, e.g., for convex bodies and for compact semialgebraic sets with dense interior. As an application this rate of convergence also applies to the stronger hierarchy based on multivariate sums of squares, which improves and extends earlier convergence results to a wider class of compact sets. Furthermore, we show that our analysis is near-optimal by proving a lower bound on the convergence rate in $\Omega(1/r2)$ for a class of polynomials on $K=[-1,1]$, obtained by exploiting a connection to orthogonal polynomials.

Summary

We haven't generated a summary for this paper yet.