Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algebraic, rational and Puiseux series solutions of systems of autonomous algebraic ODEs of dimension one (2001.10992v1)

Published 29 Jan 2020 in math.AG and math.AC

Abstract: In this paper, we study the algebraic, rational and formal Puiseux series solutions of certain type of systems of autonomous ordinary differential equations. More precisely, we deal with systems which associated algebraic set is of dimension one. We establish a relationship between the solutions of the system and the solutions of an associated first order autonomous ordinary differential equation, that we call the reduced differential equation. Using results on such equations, we prove the convergence of the formal Puiseux series solutions of the system, expanded around a finite point or at infinity, and we present an algorithm to describe them. In addition, we bound the degree of the possible algebraic and rational solutions, and we provide an algorithm to decide their existence and to compute such solutions if they exist. Moreover, if the reduced differential equation is non trivial, for every given point $(x_0,y_0)$ in the complex plane, we prove the existence of a convergent Puiseux series solution $y(x)$ of the original system such that $y(x_0)=y_0$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.