Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-task Learning for Speaker Verification and Voice Trigger Detection (2001.10816v1)

Published 26 Jan 2020 in eess.AS, cs.CL, cs.LG, cs.SD, and stat.ML

Abstract: Automatic speech transcription and speaker recognition are usually treated as separate tasks even though they are interdependent. In this study, we investigate training a single network to perform both tasks jointly. We train the network in a supervised multi-task learning setup, where the speech transcription branch of the network is trained to minimise a phonetic connectionist temporal classification (CTC) loss while the speaker recognition branch of the network is trained to label the input sequence with the correct label for the speaker. We present a large-scale empirical study where the model is trained using several thousand hours of labelled training data for each task. We evaluate the speech transcription branch of the network on a voice trigger detection task while the speaker recognition branch is evaluated on a speaker verification task. Results demonstrate that the network is able to encode both phonetic \emph{and} speaker information in its learnt representations while yielding accuracies at least as good as the baseline models for each task, with the same number of parameters as the independent models.

Citations (29)

Summary

We haven't generated a summary for this paper yet.