Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised Pre-training of Bidirectional Speech Encoders via Masked Reconstruction

Published 28 Jan 2020 in eess.AS and cs.SD | (2001.10603v2)

Abstract: We propose an approach for pre-training speech representations via a masked reconstruction loss. Our pre-trained encoder networks are bidirectional and can therefore be used directly in typical bidirectional speech recognition models. The pre-trained networks can then be fine-tuned on a smaller amount of supervised data for speech recognition. Experiments with this approach on the LibriSpeech and Wall Street Journal corpora show promising results. We find that the main factors that lead to speech recognition improvements are: masking segments of sufficient width in both time and frequency, pre-training on a much larger amount of unlabeled data than the labeled data, and domain adaptation when the unlabeled and labeled data come from different domains. The gain from pre-training is additive to that of supervised data augmentation.

Citations (95)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.