Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The KEEN Universe: An Ecosystem for Knowledge Graph Embeddings with a Focus on Reproducibility and Transferability (2001.10560v1)

Published 28 Jan 2020 in cs.LG, cs.AI, and stat.ML

Abstract: There is an emerging trend of embedding knowledge graphs (KGs) in continuous vector spaces in order to use those for machine learning tasks. Recently, many knowledge graph embedding (KGE) models have been proposed that learn low dimensional representations while trying to maintain the structural properties of the KGs such as the similarity of nodes depending on their edges to other nodes. KGEs can be used to address tasks within KGs such as the prediction of novel links and the disambiguation of entities. They can also be used for downstream tasks like question answering and fact-checking. Overall, these tasks are relevant for the semantic web community. Despite their popularity, the reproducibility of KGE experiments and the transferability of proposed KGE models to research fields outside the machine learning community can be a major challenge. Therefore, we present the KEEN Universe, an ecosystem for knowledge graph embeddings that we have developed with a strong focus on reproducibility and transferability. The KEEN Universe currently consists of the Python packages PyKEEN (Python KnowlEdge EmbeddiNgs), BioKEEN (Biological KnowlEdge EmbeddiNgs), and the KEEN Model Zoo for sharing trained KGE models with the community.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mehdi Ali (11 papers)
  2. Hajira Jabeen (5 papers)
  3. Charles Tapley Hoyt (16 papers)
  4. Jens Lehman (1 paper)
Citations (16)

Summary

We haven't generated a summary for this paper yet.