Heat flow regularity, Bismut-Elworthy-Li's derivative formula, and pathwise couplings on Riemannian manifolds with Kato bounded Ricci curvature (2001.10297v2)
Abstract: We prove that if the Ricci tensor $\mathrm{Ric}$ of a geodesically complete Riemannian manifold $M$, endowed with the Riemannian distance $\mathsf{d}$ and the Riemannian measure $\mathfrak{m}$, is bounded from below by a continuous function $k\colon M\to\mathbb{R}$ whose negative part $k-$ satisfies, for every $t>0$, the exponential integrability condition \begin{equation*} \sup_{x\in M} \mathbb{E}\big[\mathrm{e}{\int_0t k-(\mathsf{b}_rx)/2\,\mathrm{d} r}\,1_{{t < \zetax}}\big] < \infty, \end{equation*} then the lifetime $\zetax$ of Brownian motion $\mathsf{b}x$ on $M$ starting in any $x\in M$ is a.s. infinite. This assumption on $k$ holds if $k-$ belongs to the Kato class of $M$. We also derive a Bismut-Elworthy-Li derivative formula for $\nabla \mathsf{P}tf$ for every $f\in L\infty(M)$ and $t>0$ along the heat flow $(\mathsf{P}_t){t\geq 0}$ with generator $\Delta/2$, yielding its $L\infty$-$\mathrm{Lip}$-regularization as a corollary. Moreover, given the stochastic completeness of $M$, but without any assumption on $k$ except continuity, we prove the equivalence of lower boundedness of $\mathrm{Ric}$ by $k$ to the existence, given any $x,y\in M$, of a coupling $(\mathsf{b}x,\mathsf{b}y)$ of Brownian motions on $M$ starting in $(x,y)$ such that a.s., \begin{equation*} \mathsf{d}\big(\mathsf{b}tx,\mathsf{b}_ty\big) \leq \mathrm{e}{-\int_st \underline{k}(\mathsf{b}_rx,\mathsf{b}_ry)/2\,\mathrm{d} r}\,\mathsf{d}\big(\mathsf{b}_sx,\mathsf{b}_sy\big) \end{equation*} holds for every $s,t\geq 0$ with $s\leq t$, involving the "average" $\underline{k}(u,v) := \inf\gamma \int_01 k(\gamma_r)\,\mathrm{d} r$ of $k$ along geodesics from $u$ to $v$. Our results generalize to weighted Riemannian manifolds, where the Ricci curvature is replaced by the corresponding Bakry-\'Emery Ricci tensor.