2000 character limit reached
Deblurring for Spiral Real-Time MRI Using Convolutional Neural Networks (2001.09427v2)
Published 26 Jan 2020 in eess.IV
Abstract: Spiral acquisitions are preferred in real-time MRI because of their time efficiency. A fundamental limitation of spirals is image blurring due to off-resonance, which degrades image quality significantly at air-tissue boundaries. Here, we demonstrate a simple CNN-based deblurring method for spiral real-time MRI of human speech production. We show the CNN-based deblurring is capable of restoring blurred vocal tract tissue boundaries, without a need for exam-specific field maps. Deblurring performance is superior to a current auto-calibrated method, and slightly inferior to ideal reconstruction with perfect knowledge of the field maps.