Left m-invertibility by the adjoint of Drazin inverse and m-selfadjointness of Hilbert space operators (2001.09338v1)
Abstract: A Hilbert space operator $A\in\B$ is left $(X,m)$-invertible by $B\in\B$ (resp., $B\in\B$ is an $(X,m)$-adjoint of $A\in\B$) for some operator $X\in\B$ if $\triangle_{B,A}m(X)=\sum_{j=0}m(-1)j\left(\begin{array}{clcr}m\j\end{array}\right)B{m-j}XA{m-j}=0$ (resp., $\delta_{B,A}m(X)=\sum_{j=0}m(-1)j\left(\begin{array}{clcr}m\j\end{array}\right)B{(m-j)}XAj=0$). No Drazin invertible operator $A\in\B$, with Drazin inverse $A_d$, can be left $(I,m)$-invertible (equivalently, $m$-invertible) by its adjoint or its Drazin inverse or the adjoint of its Drazin inverse. For Drazin inverrtible operators $A$, it is seen that the existence of an $X$ acts as a conduit for implications $\triangle_{B,A}(X)=0\Longrightarrow \deltam_{C,A}(X)=0$, where the pair $(B,C)=$ either $(A,A_d)$ or $(A_d,A)$ or $(A,A^_d)$ or $(A_d,A^)$. Reverse implications fail. Assuming certain commutativity conditions, it is seen that $\triangle_{Ad,A}m(X)=0=\trianglen{B^_d,B}(Y)$ implies $\delta{m+n-1}{AB^,AB}(XY)=0=\delta{m+n-1}{A+B^,A+B}(XY)$.