Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The geometric Burge correspondence and the partition function of polymer replicas (2001.09145v3)

Published 24 Jan 2020 in math.PR, math-ph, math.CO, math.MP, and math.RT

Abstract: We construct a geometric lifting of the Burge correspondence as a composition of local birational maps on generic Young-diagram-shaped arrays. We establish its fundamental relation to the geometric Robinson-Schensted-Knuth correspondence and to the geometric Sch\"utzenberger involution. We also show a number of properties of the geometric Burge correspondence, specializing them to the case of symmetric input arrays. In particular, our construction shows that such a mapping is volume preserving in log-log variables. As an application, we consider a model of two polymer paths of given length constrained to have the same endpoint, known as polymer replica. We prove that the distribution of the polymer replica partition function in a log-gamma random environment is a Whittaker measure, and deduce the corresponding Whittaker integral identity. For a certain choice of the parameters, we notice a distributional identity between our model and the symmetric log-gamma polymer studied by O'Connell, Sepp\"al\"ainen, and Zygouras (2014).

Summary

We haven't generated a summary for this paper yet.