Papers
Topics
Authors
Recent
2000 character limit reached

Distance problems for dissipative Hamiltonian systems and related matrix polynomials

Published 24 Jan 2020 in math.NA and cs.NA | (2001.08902v1)

Abstract: We study the characterization of several distance problems for linear differential-algebraic systems with dissipative Hamiltonian structure. Since all models are only approximations of reality and data are always inaccurate, it is an important question whether a given model is close to a 'bad' model that could be considered as ill-posed or singular. This is usually done by computing a distance to the nearest model with such properties. We will discuss the distance to singularity and the distance to the nearest high index problem for dissipative Hamiltonian systems. While for general unstructured differential-algebraic systems the characterization of these distances are partially open problems, we will show that for dissipative Hamiltonian systems and related matrix polynomials there exist explicit characterizations that can be implemented numerically.

Citations (30)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.