Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting linear extensions of posets with determinants of hook lengths (2001.08822v2)

Published 23 Jan 2020 in math.CO

Abstract: We introduce a class of posets, which includes both ribbon posets (skew shapes) and $d$-complete posets, such that their number of linear extensions is given by a determinant of a matrix whose entries are products of hook lengths. We also give $q$-analogues of this determinantal formula in terms of the major index and inversion statistics. As applications, we give families of tree posets whose numbers of linear extensions are given by generalizations of Euler numbers, we draw relations to Naruse-Okada's positive formulas for the number of linear extensions of skew $d$-complete posets, and we give polynomiality results analogous to those of descent polynomials by Diaz-L\'opez, Harris, Insko, Omar, and Sagan.

Summary

We haven't generated a summary for this paper yet.