Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Electricity-Theft Behavior via Multi-Source Data (2001.07311v1)

Published 21 Jan 2020 in cs.CY

Abstract: Electricity theft, the behavior that involves users conducting illegal operations on electrical meters to avoid individual electricity bills, is a common phenomenon in the developing countries. Considering its harmfulness to both power grids and the public, several mechanized methods have been developed to automatically recognize electricity-theft behaviors. However, these methods, which mainly assess users' electricity usage records, can be insufficient due to the diversity of theft tactics and the irregularity of user behaviors. In this paper, we propose to recognize electricity-theft behavior via multi-source data. In addition to users' electricity usage records, we analyze user behaviors by means of regional factors (non-technical loss) and climatic factors (temperature) in the corresponding transformer area. By conducting analytical experiments, we unearth several interesting patterns: for instance, electricity thieves are likely to consume much more electrical power than normal users, especially under extremely high or low temperatures. Motivated by these empirical observations, we further design a novel hierarchical framework for identifying electricity thieves. Experimental results based on a real-world dataset demonstrate that our proposed model can achieve the best performance in electricity-theft detection (e.g., at least +3.0% in terms of F0.5) compared with several baselines. Last but not least, our work has been applied by the State Grid of China and used to successfully catch electricity thieves in Hangzhou with a precision of 15% (an improvement form 0% attained by several other models the company employed) during monthly on-site investigation.

Citations (18)

Summary

We haven't generated a summary for this paper yet.