Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The existence of primitive normal elements of quadratic forms over finite fields (2001.06977v1)

Published 20 Jan 2020 in math.NT

Abstract: For $q=3r$ ($r>0$), denote by $\mathbb{F}q$ the finite field of order $q$ and for a positive integer $m\geq2$, let $\mathbb{F}{qm}$ be its extension field of degree $m$. We establish a sufficient condition for existence of a primitive normal element $\alpha$ such that $f(\alpha)$ is a primitive element, where $f(x)= ax2+bx+c$, with $a,b,c\in \mathbb{F}_{qm}$ satisfying $b2\neq ac$ in $\Fm$ except for at most 9 exceptional pairs $(q,m)$.

Summary

We haven't generated a summary for this paper yet.