Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counter-propagating edge states in Floquet topological insulating phases (2001.06972v2)

Published 20 Jan 2020 in cond-mat.mes-hall

Abstract: Nonequilibrium Floquet topological phases due to periodic driving are known to exhibit rich and interesting features with no static analogs. Various known topological invariants usually proposed to characterize static topological systems often fail to fully characterize Floquet topological phases. This fact has motivated extensive studies of Floquet topological phases to better understand nonequilibrium topological phases and to explore their possible applications. Here we present a theoretically simple Floquet topological insulating system that may possess an arbitrary number of counter-propagating chiral edge states. Further investigation into our system reveals another related feature by tuning the same set of system parameters, namely, the emergence of almost flat (dispersionless) edge modes. In particular, we employ two-terminal conductance and dynamical winding numbers to characterize counter-propagating chiral edge states. We further demonstrate the robustness of such edge states against symmetry preserving disorder. Finally, we identify an emergent chiral symmetry at certain sub-regimes of the Brillouin zone that can explain the presence of almost flat edge modes. Our results have exposed more interesting possibilities in Floquet topological matter.

Summary

We haven't generated a summary for this paper yet.