Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling of Deep Neural Network (DNN) Placement and Inference in Edge Computing (2001.06901v1)

Published 19 Jan 2020 in cs.NI

Abstract: With the edge computing becoming an increasingly adopted concept in system architectures, it is expected its utilization will be additionally heightened when combined with deep learning (DL) techniques. The idea behind integrating demanding processing algorithms in Internet of Things (IoT) and edge devices, such as Deep Neural Network (DNN), has in large measure benefited from the development of edge computing hardware, as well as from adapting the algorithms for use in resource constrained IoT devices. Surprisingly, there are no models yet to optimally place and use machine learning in edge computing. In this paper, we propose the first model of optimal placement of Deep Neural Network (DNN) Placement and Inference in edge computing. We present a mathematical formulation to the DNN Model Variant Selection and Placement (MVSP) problem considering the inference latency of different model-variants, communication latency between nodes, and utilization cost of edge computing nodes. We evaluate our model numerically, and show that for low load increasing model co-location decreases the average latency by 33% of millisecond-scale per request, and for high load, by 21%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mounir Bensalem (19 papers)
  2. Admela Jukan (76 papers)
  3. Jasenka Dizdarević (4 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.