Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$L^2$ estimates of Poincaré-Lelong equations on convex domains in $\mathbb{C}^n$ (2001.06721v1)

Published 18 Jan 2020 in math.CV

Abstract: In this paper, we prove the existence of solutions of the Poincar\'e-Lelong equation $\sqrt{-1}\partial\bar{\partial}u=f$ on a strictly convex bounded domain $\Omega\subset\mathbb{C}n$ $(n\geq1)$, where $f$ is a $d$-closed $(1,1)$ form and is in the weighted Hilbert space $L2_{(1,1)}(\Omega,e{-\varphi})$. The novelty of this paper is to apply a weighted $L2$ version of Poincar\'e Lemma for real $2$-forms, and then apply H\"{o}rmander's $L2$ solutions for Cauchy-Riemann equations.

Summary

We haven't generated a summary for this paper yet.