Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Ranking Significant Discrepancies in Clinical Reports (2001.06674v1)

Published 18 Jan 2020 in cs.IR and cs.CL

Abstract: Medical errors are a major public health concern and a leading cause of death worldwide. Many healthcare centers and hospitals use reporting systems where medical practitioners write a preliminary medical report and the report is later reviewed, revised, and finalized by a more experienced physician. The revisions range from stylistic to corrections of critical errors or misinterpretations of the case. Due to the large quantity of reports written daily, it is often difficult to manually and thoroughly review all the finalized reports to find such errors and learn from them. To address this challenge, we propose a novel ranking approach, consisting of textual and ontological overlaps between the preliminary and final versions of reports. The approach learns to rank the reports based on the degree of discrepancy between the versions. This allows medical practitioners to easily identify and learn from the reports in which their interpretation most substantially differed from that of the attending physician (who finalized the report). This is a crucial step towards uncovering potential errors and helping medical practitioners to learn from such errors, thus improving patient-care in the long run. We evaluate our model on a dataset of radiology reports and show that our approach outperforms both previously-proposed approaches and more recent LLMs by 4.5% to 15.4%.

Citations (3)

Summary

We haven't generated a summary for this paper yet.