Optimal Codes Correcting a Burst of Deletions of Variable Length (2001.06641v1)
Abstract: In this paper, we present an efficiently encodable and decodable code construction that is capable of correction a burst of deletions of length at most $k$. The redundancy of this code is $\log n + k(k+1)/2\log \log n+c_k$ for some constant $c_k$ that only depends on $k$ and thus is scaling-optimal. The code can be split into two main components. First, we impose a constraint that allows to locate the burst of deletions up to an interval of size roughly $\log n$. Then, with the knowledge of the approximate location of the burst, we use several {shifted Varshamov-Tenengolts} codes to correct the burst of deletions, which only requires a small amount of redundancy since the location is already known up to an interval of small size. Finally, we show how to efficiently encode and decode the code.