Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy Amplification of Iterative Algorithms via Contraction Coefficients (2001.06546v1)

Published 17 Jan 2020 in cs.IT, cs.CR, cs.LG, math.IT, and stat.ML

Abstract: We investigate the framework of privacy amplification by iteration, recently proposed by Feldman et al., from an information-theoretic lens. We demonstrate that differential privacy guarantees of iterative mappings can be determined by a direct application of contraction coefficients derived from strong data processing inequalities for $f$-divergences. In particular, by generalizing the Dobrushin's contraction coefficient for total variation distance to an $f$-divergence known as $E_{\gamma}$-divergence, we derive tighter bounds on the differential privacy parameters of the projected noisy stochastic gradient descent algorithm with hidden intermediate updates.

Citations (17)

Summary

We haven't generated a summary for this paper yet.