Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

About Three Dimensional Double-Sided Dirichlet and Neumann Boundary Value Problems for the Laplacian (2001.06319v1)

Published 16 Jan 2020 in math.NA and cs.NA

Abstract: The orthogonality of Hilbert spaces whose elements can be represented as simple and double layer potentials is determined. Conditions of well-posed solvability of integral equations for the sum of simple and double layer potentials equivalent to double-sided Dirichlet, Neumann, and Dirichlet-Neumann boundary value problems for the Laplacian are established in the Hilbert space, elements of which as well as their normal derivatives have the jump through boundary surface. The properties of boundary operators that relate the double-sided boundary conditions of different types for the three-dimensional Laplace equation are investigated.

Summary

We haven't generated a summary for this paper yet.